. A G ] 2 6 A pr 1 99 9 LARGE SCHUBERT VARIETIES MICHEL

نویسنده

  • PATRICK POLO
چکیده

For a semisimple adjoint algebraic group G and a Borel subgroup B, consider the double classes BwB in G and their closures in the canonical com-pactification of G: we call these closures large Schubert varieties. We show that these varieties are normal and Cohen-Macaulay; we describe their Picard group and the spaces of sections of their line bundles. As an application, we construct geometrically van der Kallen's filtration of the algebra of regular functions on B. We also construct a degeneration of the flag variety G/B embedded diagonally in G/B × G/B, into a union of Schubert varieties. This leads to formulae for the class of the diagonal in T-equivariant K-theory of G/B × G/B, where T is a maximal torus of B.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Schubert Varieties

For a semisimple adjoint algebraic group G and a Borel subgroup B, consider the double classes BwB in G and their closures in the canonical compactification of G; we call these closures large Schubert varieties. We show that these varieties are normal and Cohen-Macaulay; we describe their Picard group and the spaces of sections of their line bundles. As an application, we construct geometricall...

متن کامل

m at h . A G ] 2 A ug 1 99 9 EIGENVALUES , INVARIANT FACTORS , HIGHEST WEIGHTS , AND SCHUBERT CALCULUS

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

متن کامل

On Orbit Closures of Spherical Subgroups in Flag Varieties

Let F be the ag variety of a complex semi-simple group G, let H be an algebraic subgroup of G acting on F with nitely many orbits, and let V be an H-orbit closure in F. Expanding the cohomology class of V in the basis of Schubert classes deenes a union V 0 of Schubert varieties in F with positive multiplicities. If G is simply-laced, we show that these multiplicites are equal to the same power ...

متن کامل

. R T / 0 60 45 78 v 1 2 6 A pr 2 00 6 PERMUTATION REPRESENTATIONS ON SCHUBERT VARIETIES

This paper defines and studies permutation representations on the equivariant cohomology of Schubert varieties, as representations both over C and over C[t1, t2, . . . , tn]. We show these group actions are the same as an action studied geometrically by M. Brion, and give topological meaning to the divided difference operators studied by Berstein-Gelfand-Gelfand, Demazure, Kostant-Kumar, and ot...

متن کامل

Affine Schubert Varieties and Circular Complexes

Schubert varieties have been exhaustively studied with a plethora of techniques: Coxeter groups, explicit desingularization, Frobenius splitting, etc. Many authors have applied these techniques to various other varieties, usually defined by determinantal equations. It has turned out that most of these apparently different varieties are actually Schubert varieties in disguise, so that one may us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999